Syndicate content
Friday, April 4, 2014

Over the past decade, GIS professionals who can manipulate the software both manually and automatically are becoming increasingly more marketable within the industry. Automating mundane/repetitive tasks frees up time to focus on more advanced analyses and other GIS processes.  

On one of our current contracts, we are required to create map products in response to “breaking news” events. These maps provide situational awareness to our client regarding the status of assets within their area of jurisdiction. Time is of the essence during these events, and the faster a map product can go out, the better.

Tuesday, June 4, 2013

With the increasing focus on information security across all sectors of government, IT policies are placing increased restrictions on information architectures, including GIS. While these restrictions may not prevent the development of a robust enterprise geospatial architecture, the approval and accreditation processes can introduce significant delays, during which work must continue. This is where workarounds come into play.

Thursday, May 30, 2013

Light detection and ranging, or LIDAR, is a type of remote sensing technology that is similar to radar. It is used in a variety of geographic and environmental applications to model and analyze the physical world.

Often mounted to an airplane or motor vehicle, the sensing unit uses radio waves and the measured time delay between pulse transmission and reflected pulse receipt to determine the distance from an object. There are two styles in which this data can be received by the unit. Some units use what is called “discrete-return,” which only records data at predetermined precise locations (space or time). Some refer to this style as “point” because it returns information specific to locations. The other type of data receipt is called “waveform,” which records data nearly continuously from the unit.